
Ergodic Mean-Payoff Games for the Analysis of
Attacks in Crypto-Currencies

Krishnendu Chatterjee1 Amir Kafshdar Goharshady1

Rasmus Ibsen-Jensen1 Yaron Velner2

1IST Austria

2Hebrew University of Jerusalem

CONCUR 2018

Outline

Intro

Blockchain and Cryptocurrencies

Concurrent Games

Modeling

Our Implementation and its Results

Outline

Intro

Blockchain and Cryptocurrencies

Concurrent Games

Modeling

Our Implementation and its Results

Quantitative Analysis of Security Violations

I Automated security analysis of programs is usually qualitative

I It uses qualitative properties, e.g. safety or liveness, to ensure
absolute security

I but absolute security is sometimes impossible or too costly

I In these cases, we want to quantify and limit the costs of
attacks → Quantitative Analysis

I What does cost mean? Is cost always well-defined?

I For Cryptocurrency protocols, it is.

Outline

Intro

Blockchain and Cryptocurrencies

Concurrent Games

Modeling

Our Implementation and its Results

Cryptocurrencies

I It all started with Bitcoin, but nowadays there are thousands
of cryptocurrencies out there.

1

1coinmarketcap.com

Cryptocurrencies

I No outside governance, no central bank

I Everything works based on the Blockchain decentralized
consensus protocol

I The protocol assumes that a majority of the network is honest

I It only dictates the outcomes of actions, but not the actions
themselves

I The whole ecosystem is game-theoretic

I Transactions are irreversible

I It’s a safety-critical system

I We need Formal Quantitative Analysis

Double Spending
The most basic attack

I Peer-to-peer transfer is not safe, because one can simply copy
the coins

I So, let’s announce all the transfers to the whole network

I Still not safe

11:4 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Figure 1 The longest chain dictates that the transaction tx belongs to Bob.

has an assigned monetary value. A locking script on an output defines a condition for using
the funds stored in that output, e.g. the need for a digital signature. An input can only use
funds of an output by passing its locking script.

Validity. A transaction is valid if these conditions hold: (a) the total value brought by the
outputs is greater than or equal to the total value of the inputs; (b) the inputs have not been
spent before; (c) the inputs satisfy locking scripts.

A transaction-based system is not secure if transactions are sent directly between users to
transfer units. While validity conditions are enough to make sure that only valid recipients
could redirect units they once truly held, there is nothing in the transactions themselves to
limit the user from spending the same output twice (in two different transactions). For this
purpose a public ledger of all valid transactions, called a blockchain, is maintained.

Blockchain. A ledger is a distributed database that maintains a growing ordered list of valid
transactions. Its main novelty is that it enforces consensus among untrusted and possibly
adversarial parties [31]. In Bitcoin (and most other major crypto-currencies) the public
ledger is implemented as a series of blocks of transactions, each containing a reference to its
previous block, and is hence called a blockchain. A consensus on the chain is obtained by a
decentralized pseudonymous protocol. Any party tries to collect new transactions, form a
block and add it to the chain (this process is called block mining). However, in order to do
so, they must solve a challenging computational puzzle (which depends on the last block of
the chain). The process of choosing the next block is as follows:
1. The first announced valid block that solves the puzzle is added to the chain.
2. If two valid blocks are found approximately at the same time (depending on network

latency), then there is a temporary fork in the chain.
Every party is free to choose either fork, and try to extend it. Hence, the underlying
structure of the blockchain is a tree. At any given time, the longest path in the tree, aka the
longest chain, is the consensus blockchain (see Figure 1). Due to the random nature of the
computational puzzle one branch will eventually become strictly longer than the other, and
all parties will adopt it.

Mining process. The puzzle asks for a block consisting of valid transactions, hash of the
previous block and an arbitrary integer nonce, whose hash is less than a target value. The
random nature of the hash function dictates a simple strategy for mining: try random nonces
until a solution is found. So the chance of a miner to find the next block is proportional to
their computational power.

Incentives for mining. There are two incentives for miners: (i) Every transaction can
donate to the miner who finds a new block that contains it, (ii) Each block creates a certain
number of new coins which are then given to the miner.

I Bitcoin’s solution: Blockchain and Mining

Blockchain
and Mining

I Transactions are grouped into blocks

I There is a distributed ledger of blocks, called the Blockchain

I Every node in the network keeps a local copy of the
Blockchain

I Mining: in order to add a block, one must solve a hard
computational puzzle

I In Bitcoin the puzzle is to invert a hash function,
f (previous block, current block,miner’s id, nonce) < c

11:4 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Figure 1 The longest chain dictates that the transaction tx belongs to Bob.

has an assigned monetary value. A locking script on an output defines a condition for using
the funds stored in that output, e.g. the need for a digital signature. An input can only use
funds of an output by passing its locking script.

Validity. A transaction is valid if these conditions hold: (a) the total value brought by the
outputs is greater than or equal to the total value of the inputs; (b) the inputs have not been
spent before; (c) the inputs satisfy locking scripts.

A transaction-based system is not secure if transactions are sent directly between users to
transfer units. While validity conditions are enough to make sure that only valid recipients
could redirect units they once truly held, there is nothing in the transactions themselves to
limit the user from spending the same output twice (in two different transactions). For this
purpose a public ledger of all valid transactions, called a blockchain, is maintained.

Blockchain. A ledger is a distributed database that maintains a growing ordered list of valid
transactions. Its main novelty is that it enforces consensus among untrusted and possibly
adversarial parties [31]. In Bitcoin (and most other major crypto-currencies) the public
ledger is implemented as a series of blocks of transactions, each containing a reference to its
previous block, and is hence called a blockchain. A consensus on the chain is obtained by a
decentralized pseudonymous protocol. Any party tries to collect new transactions, form a
block and add it to the chain (this process is called block mining). However, in order to do
so, they must solve a challenging computational puzzle (which depends on the last block of
the chain). The process of choosing the next block is as follows:
1. The first announced valid block that solves the puzzle is added to the chain.
2. If two valid blocks are found approximately at the same time (depending on network

latency), then there is a temporary fork in the chain.
Every party is free to choose either fork, and try to extend it. Hence, the underlying
structure of the blockchain is a tree. At any given time, the longest path in the tree, aka the
longest chain, is the consensus blockchain (see Figure 1). Due to the random nature of the
computational puzzle one branch will eventually become strictly longer than the other, and
all parties will adopt it.

Mining process. The puzzle asks for a block consisting of valid transactions, hash of the
previous block and an arbitrary integer nonce, whose hash is less than a target value. The
random nature of the hash function dictates a simple strategy for mining: try random nonces
until a solution is found. So the chance of a miner to find the next block is proportional to
their computational power.

Incentives for mining. There are two incentives for miners: (i) Every transaction can
donate to the miner who finds a new block that contains it, (ii) Each block creates a certain
number of new coins which are then given to the miner.

I The longest chain is the consensus chain

Incentives for Mining

I Transaction Fees
I Block Rewards (currently 12.5 BTC)

I This is how new units of currency are formed

Pool Mining

I f (previous block, current block,miner’s id, nonce) < c

I A miner’s chance of finding the next block is proportional to
his computation power

I Most miners have very little power, compared to the whole
network

I Miners’ revenue has a high variance

I It’s like winning a lottery that has positive expected value

I To reduce the variance, miners cooperate in pools

I A manager creates a pool, distributes hash inverting problems
between miners, and divides the revenue among them

I Each miner receives a share proportional to the amount of
work they did

I f (previous block, current block, pool manager’s id, nonce) <
c ′ for some c ′ > c

Block Withholding Attack

I A miner can only turn partial solutions to the pool manager,
but discard complete solutions

I Pools can and do attack each other

Double Spending is Still Possible
at least in theory

11:4 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Figure 1 The longest chain dictates that the transaction tx belongs to Bob.

has an assigned monetary value. A locking script on an output defines a condition for using
the funds stored in that output, e.g. the need for a digital signature. An input can only use
funds of an output by passing its locking script.

Validity. A transaction is valid if these conditions hold: (a) the total value brought by the
outputs is greater than or equal to the total value of the inputs; (b) the inputs have not been
spent before; (c) the inputs satisfy locking scripts.

A transaction-based system is not secure if transactions are sent directly between users to
transfer units. While validity conditions are enough to make sure that only valid recipients
could redirect units they once truly held, there is nothing in the transactions themselves to
limit the user from spending the same output twice (in two different transactions). For this
purpose a public ledger of all valid transactions, called a blockchain, is maintained.

Blockchain. A ledger is a distributed database that maintains a growing ordered list of valid
transactions. Its main novelty is that it enforces consensus among untrusted and possibly
adversarial parties [31]. In Bitcoin (and most other major crypto-currencies) the public
ledger is implemented as a series of blocks of transactions, each containing a reference to its
previous block, and is hence called a blockchain. A consensus on the chain is obtained by a
decentralized pseudonymous protocol. Any party tries to collect new transactions, form a
block and add it to the chain (this process is called block mining). However, in order to do
so, they must solve a challenging computational puzzle (which depends on the last block of
the chain). The process of choosing the next block is as follows:
1. The first announced valid block that solves the puzzle is added to the chain.
2. If two valid blocks are found approximately at the same time (depending on network

latency), then there is a temporary fork in the chain.
Every party is free to choose either fork, and try to extend it. Hence, the underlying
structure of the blockchain is a tree. At any given time, the longest path in the tree, aka the
longest chain, is the consensus blockchain (see Figure 1). Due to the random nature of the
computational puzzle one branch will eventually become strictly longer than the other, and
all parties will adopt it.

Mining process. The puzzle asks for a block consisting of valid transactions, hash of the
previous block and an arbitrary integer nonce, whose hash is less than a target value. The
random nature of the hash function dictates a simple strategy for mining: try random nonces
until a solution is found. So the chance of a miner to find the next block is proportional to
their computational power.

Incentives for mining. There are two incentives for miners: (i) Every transaction can
donate to the miner who finds a new block that contains it, (ii) Each block creates a certain
number of new coins which are then given to the miner.

In order to double spend, Bob can:

I Create two transactions, one giving the money to Alice, the
other one back to Bob

I Broadcast them at the same time from two nodes at different
locations in the network, making sure that Alice sees the first
transaction

I If Alice provides the service before seeing the second
transaction, and the second transaction eventually gets into
the consensus chain, the double spending attack is successful

In order to defend herself, Alice can wait for confirmations.

Fast Payments cannot be Confirmed

I A new block arrives every 10 minutes

I The usual practice is to wait for 6 confirmations (=1 hour)

I If Alice is selling a laptop, waiting for an hour before shipping
is acceptable

I If Alice is a vending machine or a fast food restaurant, this is
too much

I What else can Alice do?
I She can put several nodes in different locations in the network

to detect double spending

I How effective is this approach?

I It’s basically a game between Alice and Bob!

Outline

Intro

Blockchain and Cryptocurrencies

Concurrent Games

Modeling

Our Implementation and its Results

Concurrent Games

A concurrent stochastic game structure G = (S ,A, Γ1, Γ2, δ) has
the following components:

I A finite state space S and a finite set A of actions (or moves).

I Two move assignments Γ1, Γ2 : S → 2A \ ∅. For i ∈ {1, 2},
assignment Γi associates with each state s ∈ S the non-empty
set Γi (s) ⊆ A of moves available to Player i at state s.

I A probabilistic transition function δ : S × A× A→ D(S),
which associates with every state s ∈ S and moves a1 ∈ Γ1(s)
and a2 ∈ Γ2(s), a probability distribution δ(s, a1, a2) ∈ D(S)
for the successor state.

Plays

At every state s ∈ S ,

I Player 1 chooses a move a1 ∈ Γ1(s),

I simultaneously and independently Player 2 chooses a move
a2 ∈ Γ2(s).

I The game then proceeds to the successor state t with
probability δ(s, a1, a2)(t), for all t ∈ S .

I A play of G is an infinite sequence
π =

(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), (s2, a

2
1, a

2
2) . . .

)
of states and

action pairs such that for all k ≥ 0 we have (i) aki ∈ Γi (sk);
and (ii) sk+1 ∈ Supp(δ(sk , a

k
1 , a

k
2)).

I Notation: We denote by Π the set of all plays.

Example

Strategies and Rewards

I We define a reward function R : S × A× A→ R
I A strategy for Player i is a mapping
σi : (S × A× A)∗ × S → D(A)

I An event in the game is a subset A ⊆ Π of plays

I When a pair (σ1, σ2) of strategies are fixed, then the
probabilities of measurable events are well-defined

Mean-payoff Objectives

I For a path π =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
, the average

reward for T steps is AvgT (π) = 1
T ·
∑T−1

i=0 R(si , a
i
1, a

i
2),

I The limit-inferior average is:
LimInfAvg(π) = lim infT→∞ AvgT (π)

I The limit-superior average is:
LimSupAvg(π) = lim supT→∞ AvgT (π)

I We consider a zero-sum game with mean-payoff objective

I The lower and upper game values at a state s are:

v s = sup
σ1∈Σ1

inf
σ2∈Σ2

Eσ1,σ2
s [LimInfAvg];

v s = inf
σ2∈Σ2

sup
σ1∈Σ1

Eσ1,σ2
s [LimSupAvg].

I Determinacy: vs := v s = v s

Finding Values of Concurrent Games

I Determinacy was established in [Mertens and Neyman, 1981].

I Finite-memory strategies are not sufficient for optimality (e.g.
Big Match [Gillete, 1957]).

I Given a state s, and a threshold λ, the problem of whether
vs ≥ λ, can be decided in PSPACE [Chatterjee, Majumdar
and Henzinger, 2008]

I All currently known algorithms use theory of reals and
quantifier elimination and are not practical

I :(

:(:(

I How about looking into special classes of concurrent games?

Finding Values of Concurrent Games

I Determinacy was established in [Mertens and Neyman, 1981].

I Finite-memory strategies are not sufficient for optimality (e.g.
Big Match [Gillete, 1957]).

I Given a state s, and a threshold λ, the problem of whether
vs ≥ λ, can be decided in PSPACE [Chatterjee, Majumdar
and Henzinger, 2008]

I All currently known algorithms use theory of reals and
quantifier elimination and are not practical

I :(:(

:(

I How about looking into special classes of concurrent games?

Finding Values of Concurrent Games

I Determinacy was established in [Mertens and Neyman, 1981].

I Finite-memory strategies are not sufficient for optimality (e.g.
Big Match [Gillete, 1957]).

I Given a state s, and a threshold λ, the problem of whether
vs ≥ λ, can be decided in PSPACE [Chatterjee, Majumdar
and Henzinger, 2008]

I All currently known algorithms use theory of reals and
quantifier elimination and are not practical

I :(:(:(

I How about looking into special classes of concurrent games?

Ergodic Games

I A concurrent game G is ergodic if for all states s, t ∈ S , and
all pairs of strategies (σ1, σ2), if we start at s, then t is visited
infinitely often with probability 1 in the random walk πσ1,σ2

s .

I Are real-world games ergodic?

I Can we solve ergodic games?

Back to Rock-Paper-Scissors

Back to Rock-Paper-Scissors

Solving Ergodic Games

We have the following results for Ergodic Games:

I Stationary optimal strategies exist [Hoffman and Karp, 1966]

I Values and probabilities of optimal strategies can be irrational
[Chatterjee and Ibsen-Jensen, 2014], so the right question is
to approximate them

I Strategy iteration converges [Hoffman and Karp, 1966]

I :) :) :)

I There was no practical implementation of the strategy
iteration algorithm :(:(

Outline

Intro

Blockchain and Cryptocurrencies

Concurrent Games

Modeling

Our Implementation and its Results

Modeling Cryptocurrency Attacks as Ergodic Games

I Pool Attack:
I There are two pools A and B that are attacking each other
I At each turn, each of the two pools can decide how much of

their mining power should be used to attack the other pool
I States of the game correspond to the mining power of the

pools
I Miners are looking after their own interests and are not

adversarial to either A or B
I At each turn, some of the miners migrate between the pools A

and B, or choose to mine for themselves. The migration is
stochastic and depends on the revenue

I The reward function R models the revenue of pool A
I Stochastic migration makes the game ergodic

Modeling Cryptocurrency Attacks as Ergodic Games

I Zero-confirmation Double Spending:
I Bob wants to buy a hamburger from Alice
I Bob can choose to double spend the money or not
I Alice can choose to wait for confirmation or not
I Alice can choose to reset/change her connection to the

network
I The network evolves in small stochastic steps
I The evolution of the network makes the game ergodic
I The reward function R models Alice’s revenue

Outline

Intro

Blockchain and Cryptocurrencies

Concurrent Games

Modeling

Our Implementation and its Results

Implementation

I We implemented strategy iteration for ergodic games and
applied it to the cryptocurrency games

I There were two practical challenges:
I Lack of Stopping Criteria
I Numerical Precision

Results

#T States #SI Time(s)

17050 100 4 69
56252 196 2 291

135252 289 2 389
236000 400 2 1059
331816 484 2 3880
508032 576 2 6273
720954 676 2 17014
966281 784 2 53103

1269450 900 2 100435

#T States #SI Time(s)

19940 100 2 426
40040 200 2 800
60140 300 2 1141
80240 400 2 1586

100340 500 2 2069
120440 600 2 1253
140540 700 2 2999
160640 800 2 3496
180740 900 2 3917

Table: Experimental results for block-withholding pool attack (left) and
zero-confirmation double-spending (right).

	Intro
	Blockchain and Cryptocurrencies
	Concurrent Games
	Modeling
	Our Implementation and its Results

